The Milky Way’s Black Hole Comes to Light

Dr. Özel said that the similarity of the new picture to the one from 2019 demonstrated that the earlier image was not a coincidence. In an interview, Peter Galison, a physicist and historian at Harvard and a member of the collaboration, noted that the M87 black hole was 1,500 times as massive as the Milky Way’s; typically in physics or astronomy, when something increases by a factor of 10 or more, everything changes. “The similitude across such an immense scale is astonishing,” Dr. Galison said.

At Thursday’s news event, Michael Johnson, a team member and also of the Harvard-Smithsonian Center, said: “This is an extraordinary verification of Einstein’s general theory of relativity.”

Black holes were an unwelcome consequence of the general theory of relativity, which attributed gravity to the warping of space and time by matter and energy, much in the way that a mattress sags under a sleeper.

Einstein’s insight led to a new conception of the cosmos, in which space-time could quiver, bend, rip, expand, swirl and even disappear forever into the maw of a black hole, an entity with gravity so strong that not even light could escape it.

Einstein disapproved of this idea, but the universe is now known to be speckled with black holes. Many are the remains of dead stars that collapsed inward on themselves and just kept going.

But there appears to be a black hole at the center of nearly every galaxy, ours included, that can be millions or billions of times as massive as our sun. Astronomers still do not understand how these supermassive black holes have grown so big.

Paradoxically, despite their ability to swallow light, black holes are the most luminous objects in the universe. Materials — gas, dust, shredded stars — that fall into a black hole are heated to millions of degrees in a dense maelstrom of electromagnetic fields. Some of that matter falls into the black hole, but part of it is squirted out by enormous pressures and magnetic fields.

Source link

Leave a Reply

Your email address will not be published.